对于常用的数据集,PyTorch 提供了封装好的接口供用户快速调用,这些主要保存在 torchvision 中。torchvision 实现了常用的图像数据加载功能,例如 Imagenet、CIFAR10、MNIST 等,以及常用的数据转换操作,这极大方便了数据加载,并且具有可重用性。

下面的程序训练网络 LeNet 对 CIFAR-10 数据集分类:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
import torch as t
import torch.nn as nn
import torch.nn.functional as F
import torchvision as tv
import torchvision.transforms as transforms
from torch import optim
from torchvision.transforms import ToPILImage

show = ToPILImage() # 可以把 Tensor 转成 Image,方便可视化

# 定义对数据的预处理
transform = transforms.Compose([
transforms.ToTensor(), # 转为 Tensor
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)), # 归一化
])

# 训练集
trainset = tv.datasets.CIFAR10(
root='/home/abnerwang/tmp/data/',
train=True,
transform=transform)

trainloader = t.utils.data.DataLoader(
trainset,
batch_size=4,
shuffle=True,
num_workers=2)

# 测试集
testset = tv.datasets.CIFAR10(
'/home/abnerwang/tmp/data',
train=False,
transform=transform)

testloader = t.utils.data.DataLoader(
testset,
batch_size=4,
shuffle=False,
num_workers=2)

classes = ('plane', 'car', 'bird', 'cat',
'deer', 'dog', 'frog', 'horse', 'ship', 'truck')


class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(3, 6, 5)
self.conv2 = nn.Conv2d(6, 16, 5)
self.fc1 = nn.Linear(16 * 5 * 5, 120)
self.fc2 = nn.Linear(120, 84)
self.fc3 = nn.Linear(84, 10)

def forward(self, x):
x = F.max_pool2d(F.relu(self.conv1(x)), (2, 2))
x = F.max_pool2d(F.relu(self.conv2(x)), 2)
x = x.view(x.size()[0], -1)
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = self.fc3(x)
return x


net = Net()
criterion = nn.CrossEntropyLoss() # 交叉熵损失函数
optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9) # 定义优化器

# GPU 训练网络
device = t.device("cuda:0" if t.cuda.is_available() else "cpu")
net.to(device)

for epoch in range(10):

running_loss = 0.0
for i, data in enumerate(trainloader, 0):
# 输入数据
images, labels = data
images = images.to(device)
labels = labels.to(device)

# 梯度清零
optimizer.zero_grad()

# forward + backward
outputs = net(images)
loss = criterion(outputs, labels)
loss.backward()

# 更新参数
optimizer.step()

# 打印 log 信息
# loss 是一个 scalar,需要使用 loss.item() 来获取数值,不能使用 loss[idx]
running_loss += loss.item()
if i % 2000 == 1999: # 每 2000 个 batch 打印一下训练状态
print('[%d, %5d] loss: %.3f' % (epoch + 1, i + 1, running_loss / 2000))
running_loss = 0.0
print('Finished Training')

# 网络在测试集上的效果
correct = 0 # 预测正确的图片数
total = 0 # 总共的图片数

# 由于测试的时候不需要求导,可以暂时关闭 autograd,提高速度,节约内存
with t.no_grad():
for data in testloader:
images, labels = data
images = images.to(device)
labels = labels.to(device)

outputs = net(images)
_, predicted = t.max(outputs, 1) # predicted 为每行概率最大值的索引,_ 为最大概率值
total += labels.size(0)
correct += (predicted == labels).sum()

print('10000 张测试集中的准确率为: %d %%' % (100 * correct / total))

笔记来源:《pytorch-book》